3.305 \(\int \frac{(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx\)

Optimal. Leaf size=156 \[ \frac{a^2 \cos (e+f x)}{16 c^2 f (c-c \sin (e+f x))^{3/2}}+\frac{a^2 \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{16 \sqrt{2} c^{7/2} f}+\frac{a^2 c \cos ^3(e+f x)}{3 f (c-c \sin (e+f x))^{9/2}}-\frac{a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{5/2}} \]

[Out]

(a^2*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(16*Sqrt[2]*c^(7/2)*f) + (a^2*c*Cos[e
 + f*x]^3)/(3*f*(c - c*Sin[e + f*x])^(9/2)) - (a^2*Cos[e + f*x])/(4*c*f*(c - c*Sin[e + f*x])^(5/2)) + (a^2*Cos
[e + f*x])/(16*c^2*f*(c - c*Sin[e + f*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.272922, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {2736, 2680, 2650, 2649, 206} \[ \frac{a^2 \cos (e+f x)}{16 c^2 f (c-c \sin (e+f x))^{3/2}}+\frac{a^2 \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{16 \sqrt{2} c^{7/2} f}+\frac{a^2 c \cos ^3(e+f x)}{3 f (c-c \sin (e+f x))^{9/2}}-\frac{a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(a^2*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(16*Sqrt[2]*c^(7/2)*f) + (a^2*c*Cos[e
 + f*x]^3)/(3*f*(c - c*Sin[e + f*x])^(9/2)) - (a^2*Cos[e + f*x])/(4*c*f*(c - c*Sin[e + f*x])^(5/2)) + (a^2*Cos
[e + f*x])/(16*c^2*f*(c - c*Sin[e + f*x])^(3/2))

Rule 2736

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx &=\left (a^2 c^2\right ) \int \frac{\cos ^4(e+f x)}{(c-c \sin (e+f x))^{11/2}} \, dx\\ &=\frac{a^2 c \cos ^3(e+f x)}{3 f (c-c \sin (e+f x))^{9/2}}-\frac{1}{2} a^2 \int \frac{\cos ^2(e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx\\ &=\frac{a^2 c \cos ^3(e+f x)}{3 f (c-c \sin (e+f x))^{9/2}}-\frac{a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{5/2}}+\frac{a^2 \int \frac{1}{(c-c \sin (e+f x))^{3/2}} \, dx}{8 c^2}\\ &=\frac{a^2 c \cos ^3(e+f x)}{3 f (c-c \sin (e+f x))^{9/2}}-\frac{a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{5/2}}+\frac{a^2 \cos (e+f x)}{16 c^2 f (c-c \sin (e+f x))^{3/2}}+\frac{a^2 \int \frac{1}{\sqrt{c-c \sin (e+f x)}} \, dx}{32 c^3}\\ &=\frac{a^2 c \cos ^3(e+f x)}{3 f (c-c \sin (e+f x))^{9/2}}-\frac{a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{5/2}}+\frac{a^2 \cos (e+f x)}{16 c^2 f (c-c \sin (e+f x))^{3/2}}-\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{2 c-x^2} \, dx,x,-\frac{c \cos (e+f x)}{\sqrt{c-c \sin (e+f x)}}\right )}{16 c^3 f}\\ &=\frac{a^2 \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{16 \sqrt{2} c^{7/2} f}+\frac{a^2 c \cos ^3(e+f x)}{3 f (c-c \sin (e+f x))^{9/2}}-\frac{a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{5/2}}+\frac{a^2 \cos (e+f x)}{16 c^2 f (c-c \sin (e+f x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.97242, size = 307, normalized size = 1.97 \[ \frac{a^2 (\sin (e+f x)+1)^2 \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (64 \sin \left (\frac{1}{2} (e+f x)\right )+3 \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^5+6 \sin \left (\frac{1}{2} (e+f x)\right ) \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^4-28 \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^3-56 \sin \left (\frac{1}{2} (e+f x)\right ) \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^2+32 \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+(-3-3 i) \sqrt [4]{-1} \tan ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) \sqrt [4]{-1} \left (\tan \left (\frac{1}{4} (e+f x)\right )+1\right )\right ) \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^6\right )}{48 f (c-c \sin (e+f x))^{7/2} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(a^2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(32*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]) - 28*(Cos[(e + f*x)/2] -
Sin[(e + f*x)/2])^3 + 3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^5 - (3 + 3*I)*(-1)^(1/4)*ArcTan[(1/2 + I/2)*(-1)
^(1/4)*(1 + Tan[(e + f*x)/4])]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^6 + 64*Sin[(e + f*x)/2] - 56*(Cos[(e + f*
x)/2] - Sin[(e + f*x)/2])^2*Sin[(e + f*x)/2] + 6*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^4*Sin[(e + f*x)/2])*(1
+ Sin[e + f*x])^2)/(48*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^4*(c - c*Sin[e + f*x])^(7/2))

________________________________________________________________________________________

Maple [A]  time = 0.802, size = 245, normalized size = 1.6 \begin{align*} -{\frac{{a}^{2}}{96\, \left ( -1+\sin \left ( fx+e \right ) \right ) ^{2}\cos \left ( fx+e \right ) f} \left ( 3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \left ( \sin \left ( fx+e \right ) \right ) ^{3}{c}^{4}+24\,\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }{c}^{7/2}-32\, \left ( c \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{3/2}{c}^{5/2}-6\, \left ( c \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{5/2}{c}^{3/2}-9\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \left ( \sin \left ( fx+e \right ) \right ) ^{2}{c}^{4}+9\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \sin \left ( fx+e \right ){c}^{4}-3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }\sqrt{2}}{\sqrt{c}}} \right ){c}^{4} \right ) \sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }{c}^{-{\frac{15}{2}}}{\frac{1}{\sqrt{c-c\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x)

[Out]

-1/96*a^2*(3*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)^3*c^4+24*(c*(1+sin(f*x+e
)))^(1/2)*c^(7/2)-32*(c*(1+sin(f*x+e)))^(3/2)*c^(5/2)-6*(c*(1+sin(f*x+e)))^(5/2)*c^(3/2)-9*2^(1/2)*arctanh(1/2
*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)^2*c^4+9*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(
1/2)/c^(1/2))*sin(f*x+e)*c^4-3*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*c^4)*(c*(1+sin(f*
x+e)))^(1/2)/c^(15/2)/(-1+sin(f*x+e))^2/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^2/(-c*sin(f*x + e) + c)^(7/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.15374, size = 1118, normalized size = 7.17 \begin{align*} \frac{3 \, \sqrt{2}{\left (a^{2} \cos \left (f x + e\right )^{4} - 3 \, a^{2} \cos \left (f x + e\right )^{3} - 8 \, a^{2} \cos \left (f x + e\right )^{2} + 4 \, a^{2} \cos \left (f x + e\right ) + 8 \, a^{2} +{\left (a^{2} \cos \left (f x + e\right )^{3} + 4 \, a^{2} \cos \left (f x + e\right )^{2} - 4 \, a^{2} \cos \left (f x + e\right ) - 8 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt{c} \log \left (-\frac{c \cos \left (f x + e\right )^{2} + 2 \, \sqrt{2} \sqrt{-c \sin \left (f x + e\right ) + c} \sqrt{c}{\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) +{\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} +{\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \,{\left (3 \, a^{2} \cos \left (f x + e\right )^{3} + 25 \, a^{2} \cos \left (f x + e\right )^{2} - 10 \, a^{2} \cos \left (f x + e\right ) - 32 \, a^{2} +{\left (3 \, a^{2} \cos \left (f x + e\right )^{2} - 22 \, a^{2} \cos \left (f x + e\right ) - 32 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt{-c \sin \left (f x + e\right ) + c}}{192 \,{\left (c^{4} f \cos \left (f x + e\right )^{4} - 3 \, c^{4} f \cos \left (f x + e\right )^{3} - 8 \, c^{4} f \cos \left (f x + e\right )^{2} + 4 \, c^{4} f \cos \left (f x + e\right ) + 8 \, c^{4} f +{\left (c^{4} f \cos \left (f x + e\right )^{3} + 4 \, c^{4} f \cos \left (f x + e\right )^{2} - 4 \, c^{4} f \cos \left (f x + e\right ) - 8 \, c^{4} f\right )} \sin \left (f x + e\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

1/192*(3*sqrt(2)*(a^2*cos(f*x + e)^4 - 3*a^2*cos(f*x + e)^3 - 8*a^2*cos(f*x + e)^2 + 4*a^2*cos(f*x + e) + 8*a^
2 + (a^2*cos(f*x + e)^3 + 4*a^2*cos(f*x + e)^2 - 4*a^2*cos(f*x + e) - 8*a^2)*sin(f*x + e))*sqrt(c)*log(-(c*cos
(f*x + e)^2 + 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*sqrt(c)*(cos(f*x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e)
 + (c*cos(f*x + e) - 2*c)*sin(f*x + e) + 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e)
 - 2)) - 4*(3*a^2*cos(f*x + e)^3 + 25*a^2*cos(f*x + e)^2 - 10*a^2*cos(f*x + e) - 32*a^2 + (3*a^2*cos(f*x + e)^
2 - 22*a^2*cos(f*x + e) - 32*a^2)*sin(f*x + e))*sqrt(-c*sin(f*x + e) + c))/(c^4*f*cos(f*x + e)^4 - 3*c^4*f*cos
(f*x + e)^3 - 8*c^4*f*cos(f*x + e)^2 + 4*c^4*f*cos(f*x + e) + 8*c^4*f + (c^4*f*cos(f*x + e)^3 + 4*c^4*f*cos(f*
x + e)^2 - 4*c^4*f*cos(f*x + e) - 8*c^4*f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

sage2